Туре	Forms	What to do
First Order Linear	1. $y' + p(t)y = g(t)$ 2. $P(t)y' + Q(t)y = G(t)$	1. If the form is in the second case, divide both sides by P(t) to make the equation become the first form.
		2. Multiply both sides of the equation by an integrating factor, $\mu(t)$.
		3. Let LHS of (2) = (µ(t)*y)'
		4. Solve for μ(t)
		5. Let (µ(t)*y)' = RHS of (2)
		6. Solve for y
Separable Equations	1. $M(x) + N(y)y' = 0$	1. Separate the terms with x from the
	2. M(x)dx + N(y)dy = 0	2 Integrate both sides
	3. $M(x)dx = N(y)dy$	2. Mayo all terms with a variable in it to
		the LHS and all constants to the RHS.
First Order Homogeneous Equations	This is a special type of separable equation, so the form looks the same. A first order differential equation is homogeneous if it can be written in this form: y' = $f(y/x)$	 Let v = y/x. y = vx y' = v'x + v Treat the new equation as a separable equation and solve. At the end, substitute y/x for v.
Exact Equations	M(x,y) + N(x,y)y' = 0	1. Check if dyM = dxN
	M(x,y)dx + N(x,y)dy = 0	If dyM = dxN: 1. Let M = dxF and N = dyF
		2. Let F = ∫Mdx
		2. Solve N = dxF
		3. Solve for C(y)
		If dyM ≠ dxN: 1. Multiply both sides of the equation by an integrating factor, µ.

		 2. To know if μ is a function of x, see if (dyM - dxN)/N depends on x only. If it does, then μ is a function of x. If (dyM - dxN)/N does not depend on x only, check if (dxN - dyM)/M depends on y only. If it does, then μ is a function of y. Note: μ may be a function of some combination of x and y. There's no rule to show what μ is a function of. 3. Do dy(μM) = dx(μN) and solve for μ. 4. Treat the new equation as an exact equation and solve.
Homogeneous Equations With Constant Coefficients	ay" + by' + cy = 0	Let $y = e^{rt}$. Hence, $y' = re^{rt}$ and $y'' = r^2e^{rt}$ $ar^2e^{rt} + bre^{rt} + ce^{rt} = 0$ $e^{rt}(ar^2 + br + c) = 0$ $ar^2 + br + c = 0$ Using the quadratic formula, we get 3 different cases: $b^2 - 4ac > 0$ 1. Here, $r1 \neq r2$ and $r1$, $r2 \in \mathbb{R}$ 2. $Y1 = e^{r1t}$ and $Y2 = e^{r2t}$ 3. $Y = C1Y1 + C2Y2$ $b^2 - 4ac = 0$ 1. Here, $r1 = r2$ and $r1$, $r2 \in \mathbb{R}$ 2. $Y1 = e^{r1t}$ and $Y2 = te^{r1t}$ 3. $Y = C1Y1 + C2Y2$ $b^2 - 4ac < 0$ 1. Here, $r1 \neq r2$ and $r1$, $r2 \in \mathbb{C}$ 2. $r1 = \lambda + iu$ and $r2 = \lambda - iu$ Note: We will be using r1 only. 3. $Y1 = e^{\lambda t}(cos(ut))$ and $Y2 = e^{\lambda t}(sin(ut))$ 4. $Y = C1Y1 + C2Y2$
Reduction of Order	p(t)y'' + q(t)y' + r(t)y = 0 Y1 = f(t)	 Let Y2 = v(t)*Y1, where v is an unknown function. Plug in Y2 into the original equation

		and solve for v. 3. Solve for Y2.
Euler's Equation	$t^2y'' + \alpha ty' + \beta y = 0$	Let $y = t^r$, where r is an unknown constant $t^2(t^r)^{"} + \alpha t(t^r)^{"} + \beta(t^r) = 0$ $(t^2)(r)(r-1)(t^{r-2}) + (\alpha)(t)(r)(t^{r-1}) + \beta(t^r) = 0$ $(r)(r-1)(t^r) + (\alpha)(t)(r)(t^r) + \beta(t^r) = 0$ $(t^r)[(r)(r-1) + (\alpha)(t)(r) + \beta] = 0$ $r^2 + (\alpha - 1)r + \beta = 0$
		Using the quadratic formula, we get 3 different cases:
		b ² - 4ac > 0 1. Here, r1 ≠ r2 and r1, r2 ∈ R
		2. Y1 = t^{r_1} and Y2 = t^{r_2}
		3. Y = C1Y1 + C2Y2
		b ² - 4ac = 0 1. Here, r1 = r2 and r1, r2 ∈ R
		2. Y1 = t^{r_1} and Y2 = $ln(t)t^{r_1}$
		3. Y = C1Y1 + C2Y2
		b ² - 4ac < 0 1. Here, r1 ≠ r2 and r1, r2 ∈ C
		2. r1 = λ + iu and r2 = λ - iu Note: We will be using r1 only.
		3. Y1 = $t^{\lambda}(\cos(u^*\ln(t)))$ and Y2 = $t^{\lambda}(\sin(u^*\ln(t)))$
		4. Y = C1Y1 + C2Y2
Non-Homogeneous Equation	y'' + p(t)y' + q(t)y = g(t)	Too many possibilities